LENGUAJE DE PROGRAMACION

“Primero aprende informática y toda la teoría. Después desarrolla un estilo de programación Entonces, olvídalo todo y hackea.”

LENGUAJE DE PROGRAMACION

“Hay sólo dos clases de lenguajes de programación: aquellos de los que la gente está siempre quejándose y aquellos que nadie usa.”

LENGUAJE DE PROGRAMACION

“Escribir en C o C++ es como utilizar una sierra eléctrica sin ningún tipo de protección.”

LENGUAJE DE PROGRAMACION

ELEVA TU COSMO, HAKI, KI Y TU CHACRA HASTA EL INFINITO NO DEJES QUE NADA TE DETENGA RECUERDA QUE DIOS SIEMPRE ESTA CON NOSOTROS Y ESTANDO CON DIOS NADA ES IMPOSIBLE EN ESTA VIDA.

LENGUAJE DE PROGRAMACION

La tarea del hacker no es destruir, sino utilizar sus conocimientos en favor de la libertad y la igualdad social.

domingo, 26 de abril de 2015

TEMAS MULTIPLES















domingo, 19 de abril de 2015

CIRCUITOS ELECTRONICOS

CIRCUITOS ELECTRÓNICOS

 Los circuitos eléctricos se pueden definir como un conjunto de operadores unidos de tal forma que permiten el paso o la circulación de la corriente eléctrica (electrones) con objeto de producir algún efecto útil (luz, calor, movimiento, etc.).



 1. Circuitos eléctricos   

Un circuito eléctrico es un conjunto de operadores unidos de tal forma que permitan el paso o la circulación de la corriente eléctrica (electrones) para conseguir algún efecto útil (luz, calor, movimiento, etcétera). Todo circuito eléctrico debe disponer como mínimo de generadores, conductores y receptores (elementos imprescindibles). Sin embargo, no es frecuente que estos elementos se conecten de forma aislada en un circuito, ya que esta disposición presenta varios inconvenientes. Por un lado, el receptor (bombilla) se encontrará funcionando continuamente hasta que la pila se gaste o alguien modifique la instalación. Por otro lado, tanto el circuito anterior como los usuarios que lo utilicen no se encuentran protegidos. Para evitar los problemas anteriores, los circuitos suelen completarse con los elementos de maniobra y protección, si bien de momento, como trabajaremos siempre con pilas de 4,5 V, prescindiremos en algunos casos de estos últimos al montar nuestros cir cuitos. En la siguiente tabla se muestran los elementos de un circuito eléctrico.


Figura 7.1

a) En los circuitos de corriente continua, los electrones circulan del polo negativo al polo positivo (sentido real). 
b) Elementos fundamentales de un circuito eléctrico.

En la siguiente tabla se muestran los elementos de un circuito eléctrico.



 2. Magnetismo natural y electromagnetismo

Para comprender los fenómenos electromagnéticos que rigen el funcionamiento de algunos de los operadores eléctricos más utilizados, como el motor, el timbre, los electroimanes, etc., así como los sistemas con los que es posible obtener energía eléctrica, es interesante que, previamente, te familiarices con los principios en los que se basa el magnetismo natural mediante la realización de sencillas experiencias.
 2.1 Magnetismo natural. Los imanes El ser humano, antes de descubrir la corriente eléctrica como tal y los efectos magnéticos que esta produce, ya se dio cuenta de que existían sustancias naturales que, como la magnetita, eran capaces de atraer el hierro, materiales que conocemos popularmente con el nombre de imanes y cuyas propiedades magnéticas (nombre que deriva de la magnetita) analizaremos brevemente. 1. Un imán es capaz de atraer un objeto de hierro situado a una distancia conveniente, siempre que el objeto posea un tamaño proporcional a la fuerza del imán. 2. En una primera aproximación que nos ayude a comprender cómo funcionan los imanes, podemos suponer que su interior está formado por partículas (moléculas) que se encuentran ordenadas según una determinada dirección; de esta forma, se generan los polos del imán. Este hecho hace que al enfrentar dos imanes se repelan o atraigan en función de la polaridad que tengan los extremos enfrentados. A igual polaridad se repelen, y a distinta polaridad se atraen. El ser humano pronto se dio cuenta de que la Tierra se comportaba como un gigantesco imán, y estableció conclusiones sobre las causas por las que los materiales magnéticos siempre se orientan en una dirección. Acababa de descubrir la brújula. En la Figura 7.2 se ha representado el procedimiento que debes seguir para fabricar una brújula, método que ya conocían los navegantes hace siglos.


Figura 7. 2.   Algunas características de los imanes.


Figura 7. 3

a) y b) Experiencias que muestran cómo la corriente eléctrica que atraviesa un conductor genera campos electromagnéticos concéntricos que se evidencia en las limaduras de hierro y en la brú- jula capaces de desviar la orientación de las agujas de las brújulas. c) En el interior de un conductor con forma de espiral las líneas de fuerza se ven reforzadas.

 2.2 Magnetismo artificial. Electromagnetismo

La corriente eléctrica también es capaz de crear un campo magnético a su alrededor. Para comprobarlo podemos realizar dos experiencias. Si arrollamos cientos de espiras, construiremos una bobina cuyo campo magnético interior se verá reforzado. Para comprobarlo podemos construir una bobina sencilla, empleando para ello un prisma de cartulina sobre el que arrollaremos varios metros de cable. Si introducimos una brújula y conectamos el diseño a una pila, observaremos que la brújula se desvía (Figura 7.4). Acabas de construir un galvanómetro, instrumento que permite detectar la corriente eléctrica que circula por un conductor. Con esta bobina podemos hacer dos nuevas experiencias. Por un lado, demostraremos que con un imán se puede generar corriente eléctrica, y por otro, construiremos un electroimán.

 2.2.1 El imán que genera corriente

Michael Faraday descubrió, en 1831, que al situar un imán en el interior de una bobina y producir un movimiento relativo de uno respecto a otro se generaba un flujo eléctrico. Fenómeno que denominó inducción magnética, en el que se basa, por ejemplo, el funcionamiento de la dinamo de una bicicleta y que tú mismo podrás comprobar si realizas la experiencia descrita en la Figura 7.5.

 2.2.2 La corriente que genera un campo magnético. El electroimán

Si enrollamos un cable alrededor de un hierro (tornillo, varilla o similar) habremos construido una bobina mucho más potente que la anterior, ya que el hierro facilita la circulación del campo magnético por el interior de la bobina. Este diseño se denomina electro imán, y de él se derivan múltiples aplicaciones, que pueden ir desde un timbre hasta una grúa industrial. En la Figura 7.6 se muestra el proceso que has de seguir para la construcción de un electro-imán capaz de atraer pequeñas puntas u objetos de hierro o desviar, por la acción del campo magnético, la aguja de una brújula.

Figura 7. 6.

a) Construcción de un electroimán empleando un tornillo de acero y 2 m de cable. 
b) Electroimán aplicado a una barrera.


 3. Generación de la corriente eléctrica alterna y continua. El alternador y la dinamo

Los alternadores y las dinamos son máquinas eléctricas que tienen por misión transformar la energía mecánica de rotación, que reciben a través de su eje, en energía eléctrica alterna y continua, respectivamente.

3.1 El alternador

Ya hemos comprobado cómo cuando un conductor se desplaza a través de un campo magnético se genera en este una corriente eléctrica inducida que, en función del sentido del movimiento respecto al campo magnético, circulará en uno u otro sentido. Pues bien, si el conductor que utilizamos para poderlo mover con mayor facilidad dentro del campo adopta una forma de espira, se inducirá en este una tensión que irá oscilando (alternando) entre unos valores máximos y mínimos que incluso irán cambiando de signo; de ahí que a este tipo de corrientes eléctricas se las denomine alternas, y a los aparatos que las generan, alternadores.

Figura 7. 7. 
Generación de corriente eléctrica inducida por el desplazamiento de un conductor en el interior de un campo magnético.

Alternador de laboratorio. Observa cómo estos disponen de dos anillos colectores que rozan en unas escobillas sobre las que se conecta el circuito exterior.
.el alternador es el operador encargado de generar corriente alterna. Consta de dos partes: el rotor y el estator.
.El rotor es un elemento cilíndrico provisto de electroimanes situado en el interior del estator capaz de girar alrededor de su eje cuando este es impulsado por la acción del vapor a presión, agua, etc., que actúa sobre las turbinas.
.El estator es una carcasa metálica fija en cuyo interior se aloja el rotor sobre el que se arrolla un hilo conductor.

4. Magnitudes y unidades eléctricas

Para analizar los circuitos y las magnitudes eléctricas, y hacer más fácil su comprensión, puedes comparar cada una de ellas con algún fenómeno hidráulico de características similares.

 4.1 Carga eléctrica
La carga eléctrica, q, expresa la cantidad de electricidad que tiene un cuerpo, es decir, el exceso o defecto de electrones. Su unidad es el culombio (C). Dicho de otra forma, imaginemos que cada electrón es un pequeño personaje. Como el número de electrones que circula por un conductor suele ser altísimo y cada uno tiene una fuerza eléctrica muy pequeña, estos se agrupan en «equipos de trabajo», denominados culombios.

4.2 Intensidad
Intensidad de corriente eléctrica, I, es la cantidad de carga eléctrica (o de electrones) que atraviesa la sección de un conductor por unidad de tiempo.

donde I es la intensidad de corriente y se mide en amperios (A), q es la carga que atraviesa el conductor y su unidad es el culombio (C), y t es el tiempo y se mide en segundos (s).

 4.3 Resistencia
La resistencia, R, es la mayor o menor dificultad que opone un conductor al paso de la corriente eléctrica. La resistencia de un conductor depende de las características del material, es decir, de su resistividad, así como de la longitud y la sección del conductor. Todos estos parámetros se relacionan mediante la expresión:
donde R es la resistencia y su unidad es el ohmio (Ω), r es la resistividad del material y se mide en Ω?m, l la longitud del hilo conductor (m) y S la sección del hilo conductor (m2). Si pudiéramos comparar cómo circula la corriente eléctrica por el interior de distintos conductores, igual que vemos correr el agua por dos mangueras transparentes de distinta rugosidad interior, comprobaríamos que cada material ofrece una oposición distinta al paso del fluido en función de sus características internas. A esto es a lo que llamamos resistividad (ρ) de un conductor. Del mismo modo, observaríamos que el fluido circula mejor por tuberías (conductores) de menor longitud y de mayor sección.

4.4 El voltaje
El voltaje, V, es el valor de la fuerza electromotriz o diferencia de potencial expresado en voltios. El voltaje o tensión se mide siempre entre dos puntos de un circuito.
 El voltio se define como la diferencia de potencial capaz de provocar una corriente de intensidad 1 A en un conductor cuya resistencia es de 1 Ω.
 Georg Simon Ohm descubrió, a principios del siglo XIX, que en los circuitos la intensidad, la resistencia y la tensión se relacionan según la ley que lleva su nombre, la ley de Ohm, cuya expresión es:
donde I es la intensidad de la corriente y se mide en amperios (A), V es el potencial y su unidad es el voltio (V), y R es la resistencia del conductor y se mide en ohmios (Ω).


5. Relación entre magnitudes. Ley de Ohm

Ya hemos comentado anteriormente que, a principios del siglo XIX, Georg Simon Ohm descubrió que en los circuitos eléctricos la intensidad, la resistencia y la tensión se relacionaban según una ley, por eso a esa ley se la llama ley de Ohm.


En la Figura 7.19 puedes comprobar que, en función del vértice por el que entres, sabrás la fórmula que has de aplicar según la ley de Ohm, la cual te permitirá calcular una magnitud desconocida partiendo de las otras dos conocidas. En las Figuras 7.20 y 7.21 puedes observar cómo, en cada caso, los personajes aplican la ley de Ohm seleccionando la fórmula apropiada.

.



 6. Símbolos 

A la hora de representar un circuito eléctrico con sus operadores y elementos que intervienen en ellos, se suelen utilizar los símbolos normalizados que los representan. En la siguiente tabla se han representado los operadores eléctricos de uso más habitual en secundaria, así como la función que desarrollan y los símbolos normalizados que permiten realizar su representación simplificada.


7. Cálculo de magnitudes eléctricas.

Según la forma de conectar los receptores, podemos tener los circuitos en serie, en paralelo y mixtos. Vamos a suponer que la intensidad que circula por el circuito (los amperios) está formada por un personaje, la tensión por un desnivel en el terreno y la resistencia por un camino de mayor o menor anchura (resistencia).





Diagrama de Flujos:
ejercicios:

Determinar:













jueves, 16 de abril de 2015

toma de decisiones simple,doble y multiple

                                                              Algoritmo
En matemáticas, lógica, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus y este a su vez del matemático persa Al-Juarismi1 ) es un conjunto prescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad.2 Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia.1

En la vida cotidiana, se emplean algoritmos frecuentemente para resolver problemas. Algunos ejemplos son los manuales de usuario, que muestran algoritmos para usar un aparato, o las instrucciones que recibe un trabajador por parte de su patrón. Algunos ejemplos en matemática son el algoritmo de multiplicación, para calcular el producto, el algoritmo de la división para calcular el cociente de dos números, el algoritmo de Euclides para obtener el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un sistema lineal de ecuaciones.



Las estructuras condicionales comparan una variable contra otro(s)valor (es), para que en base al resultado de esta comparación, se siga un curso de acción dentro del programa. Cabe mencionar que la comparación se puede hacer contra otra variable o contra una constante, según se necesite. Existen tres tipos básicos, las simples, las dobles y las múltiples.
Simples: 

Las estructuras condicionales simples se les conoce como ?Tomas de decisión?. Estas tomas de decisión tienen la siguiente forma: 




Ejercicios en  Dev - C++







2)




Dobles: 

Las estructuras condicionales dobles permiten elegir entre dos opciones o alternativas posibles en función del cumplimiento o no de una determinada condición. Se representa de la siguiente forma:


Ejercicio:
Se desea escribir un algoritmo que pida la altura de una persona, si la altura es menor o igual a 150 cm envíe el mensaje: “Persona de altura baja”; si la altura está entre 151 y 170 escriba el mensaje: “Persona de altura media” y si la altura es mayor al 171 escriba el mensaje: “Persona alta”. Exprese el algoritmo usando Pseudocódigo y diagrama de flujos. 









Múltiples: 

Las estructuras de comparación múltiples, son tomas de decisión especializadas que permiten comparar una variable contra distintos posibles resultados, ejecutando para cada caso una serie de instrucciones especificas. La forma común es la siguiente: 




ejercicios:
Realizar un algoritmo en donde se pide la edad del usuario; si es mayor de edad debe aparecer un mensaje indicándolo. Expresarlo en Pseudocódigo y Diagrama de flujos.